Problems logging in

MaterialOberflächen - NanoFunktionalitäten MONaF

Aktuelle Ergebnisse auf dem Gebiet funktionalisierter Oberflächen und neuer Materialien, Neuigkeiten rund um Materialoberflächen!

Bernd Grünler Comprehensive porosity determination of combustion-deposited SiOx thin films and correlation with FTIR signal
Comprehensive porosity determination of combustion-deposited
SiOx thin films and correlation with FTIR signal
B.S.M. Kretzschmar, E. Wendler, A. Heft, R. Köcher, C. Voigt, C.
Ronning, B. Grünler, E. Rädlein
Bernd Grünler Neue antimikrobielle Beschichtungen für Wundauflagen mittels Zinkoxid
Forschungslabor der Klinik für Hautkrankheiten des Universitätsklinikums Jena, eine zinkoxidhaltige antimikrobielle Beschichtung für Wundauflagen entwickelt. Antibakterielle Wundauflagen können dabei helfen, infizierte oder chronische Wunden zu therapieren. Im Fokus der Untersuchungen standen eine sehr gute Wirksamkeit gegen verschiedene Mikroorganismen und eine optimale Verträglichkeit mit menschlichen Zellen.
Das Thema Wundinfektionen ist im Bereich der Krankenhausversorgungen und der ambulanten Betreuung von Patienten ein bekanntes und kostenintensives Problem. Durch die Ausbreitung von antibiotikaresistenten Bakterien wird diese Situation weiter verschärft. Verfügbare Budgets können die Kosten für derartige Behandlungen meist nicht vollständig decken. In diesem Zusammenhang haben Wissenschaftler der Forschungseinrichtung INNOVENT e.V. aus Jena eine Beschichtung entwickelt, die nicht nur die gängigen Produkte am Markt in Bezug auf Wirkung und Verträglichkeit schlägt, sondern auch in der Herstellung und Umsetzung kostengünstig ist.
Vielseitig angewendete Präparate und Produkte für die Behandlung von infizierten Wunden sind unter anderem Polyhexanid (PHMB) und silberhaltige Wundauflagen. Im Fall von PHMB und anderen quaternären Ammoniumverbindungen sind die Toxizität und die teilweise vorhandene Karzinogenität ein Risiko. Dieses Risiko kann bei der Verwendung von silberhaltigen Produkten zwar reduziert werden, dennoch ist Silber kein im Körper verstoffwechselbares Element. Zinkoxid wiederum zeichnet sich durch seine antimikrobielle Wirkung und seine gute Hautverträglichkeit aus und ist bereits seit Jahren wichtiger Bestandteil diverser dermatologischer/kosmetischer Produkte. Zusätzlich zählt Zink zu den essentiellen Spurenelementen für den Stoffwechsel. Es ist Bestandteil einer Vielzahl von Enzymen und nimmt eine Schlüsselrolle im Zucker-, Fett- und Eiweißstoffwechsel ein. Sowohl das Immunsystem und viele Hormone benötigen Zink für ihre Funktion. Als Alternative für einen antimikrobiellen und gut verträglichen Wirkstoff ist Zinkoxid damit prädestiniert.
In zahlreichen Versuchen auf verschiedenartige, für Wundauflagen geeignete Textilien konnte mittels der neuen und innovativen Technik der Atmosphärendruckplasmabeschichtung (APCVD-Plasma-Beschichtung) eine mit Zinkoxid dotierte Verbundschicht aufgebracht und anschließend bewertet werden. Hierbei werden feinste Zinkoxidpartikel in einem Siliziumoxid-Matrixverbund an der Oberfläche der jeweiligen Textilien appliziert. Das Erscheinungsbild dieser Beschichtungen auf einem Textil ist in Abbildung 1 dargestellt. Die Wirksamkeit von Zinkoxid gegen multiresistente Keime zeigte sich bereits bei sehr geringer Konzentration: Es war nur eine Wirkstoffkonzentration von 5 Atomprozent in der Beschichtung notwendig um beispielsweise eine sehr gute antimikrobielle Wirkungen gegen die Krankenhauskeime S.aureus (MRSA) und K.pneumoniae nach JIS L 1902 / ISO 20743 zu erzielen. Weiterhin konnten die Zinkoxid-haltigen Beschichtungen auch das Bakterienwachstum gegen Escherichia coli um 100% verringern. Abbildung 2 zeigt die schnelle Wirkung der mit Zinkoxid ausgestatteten Wundauflagen gegen E.coli Bakterien nach nur 3 Stunden Inkubation. Am Markt verfügbare silberhaltige Produkte haben in der gleichen Zeit eine geringere Wirkung erzielen können.
Wirkung auf menschliche Zellen
Ein wesentlicher Punkt in der Anwendung von antimikrobiell wirkenden Beschichtungen ist die Überprüfung der zytotoxischen Wirkung auf menschliches Gewebe. Durch eine an die DIN 10993-5 angelegte In-vitro-Überprüfung des zytotoxischen Potentials konnte für alle getesteten Materialien eine gute Zellverträglichkeit nachgewiesen werden. Durch die Nutzung eines 3D-Hautmodells war eine anwendungsnahe Überprüfung der Wirkung auf menschliche Zellen möglich. Auch hierbei zeigten die mit Zinkoxid beschichteten Wundauflagen eine optimale Verträglichkeit.
Quellen
S. Spange, O. Beier, E. Jäger, L. Friedrich, A. Pfuch, J. Schmidt, A. Schimanski, B. Grünler; "Antibakterielle Schichten für die Medizintechnik, hergestellt mittels Atmosphärendruckplasmen" Jahrbuch Oberflächentechnik Band 70 (2014), Hrsg. T. Sörgel, Leuze Verlag Bad Saulgau, S. 277 - 292 (ISBN 978-3-87480-2857)
Wissenschaftlicher Ansprechpartner
INNOVENT e.V. Technologienentwicklung Jena
Dr. Bernd Grünler
Prüssingstraße 27B
07745 Jena
bg@innovent-jena.de
Ritu Mishra White Cement Market Outlook to 2023 Latest News
Get Sample Report: http://bit.ly/2S3xjmE
White Cement market was valued at $6,569 million in 2016, and is expected to reach $8,305 million by 2023, registering a CAGR of 3.4% from 2017 to 2023. White cement is a construction material, which exhibits aesthetic and hydraulic binding properties. This cement is often deployed along with pigments to impart attractive color to the concretes and mortars, which is not feasible with ordinary gray cement.
The color of white cement is determined by its raw materials, such as iron and manganese, used during the production process. White cement is OPC-clinker using fuel oil (instead of coal) with an iron oxide content below 0.4 per cent to ensure whiteness. A special cooling technique is used in its production. It is used to enhance aesthetic value in tiles and flooring Hence, white cement serves as a key ingredient in the production of architectural and decorative concrete that finds applications in terrazzo tiles, paints, pavers, and pre-fabricated products such as artificial walls and tile adhesives.
Bernd Grünler INNOVENT sucht Mitarbeiter (m/w/d) für Marketing und Öffentlichkeitsarbeit
Mehr unter:
Bernd Grünler Forscher untersuchen erstmals "lebende" Nanomaterialien
Eine neue Form der Elektronenmikroskopie ermöglicht es Forschern, nanoskalige Rohrmaterialien zu untersuchen, während sie "lebendig" sind und Flüssigkeiten bilden - eine Premiere auf dem Fachgebiet.
Die neue Technik, die von einem multidisziplinären Team der Northwestern University und der University of Tennessee entwickelt wurde und die sogenannte Flüssigphasen-Transmissions-Elektronenmikroskopie (VT-LPTEM) genannt wird, ermöglicht es Forschern, diese dynamischen, empfindlichen Materialien mit hoher Auflösung zu untersuchen. Mit diesen Informationen können Forscher besser verstehen, wie Nanomaterialien wachsen, sich bilden und entwickeln.
"Bis jetzt konnten wir nur tote, statische Materialien betrachten", sagte Nathan Gianneschi vom Northwestern, der die Studie mit leitete. "Diese neue Technik erlaubt es uns, die Dynamik direkt zu untersuchen - etwas, was vorher nicht möglich war."
Gianneschi ist der Jacob und Rosaline Cohn Professor für Chemie am Weinberg College of Arts and Sciences der Northwestern University, Professor für Materialwissenschaften und Ingenieurwesen und Biomedizinische Technik an der McCormick School of Engineering und stellvertretender Direktor des International Institute for Nanotechnology. Er leitete die Studie gemeinsam mit David Jenkins, Associate Professor für Chemie an der University of Tennessee, Knoxville.
Nachdem Anfang des 20. Jahrhunderts die Bildgebung mit lebenden Zellen möglich wurde, revolutionierte sie den Bereich der Biologie. Zum ersten Mal konnten Wissenschaftler lebende Zellen beobachten, wie sie aktiv Lebensfunktionen entwickelten, migrierten und ausführten. Bisher konnten die Forscher nur tote, fixierte Zellen untersuchen. Der Technologiesprung lieferte entscheidende Erkenntnisse über Art und Verhalten von Zellen und Geweben.
"Wir denken, dass LPTEM für die Nanowissenschaften das tun könnte, was die Lebendzell-Lichtmikroskopie für die Biologie getan hat", sagte Gianneschi.
LPTEM ermöglicht es Forschern, Komponenten zu mischen und chemische Reaktionen durchzuführen, während sie beobachten, wie sie sich unter einem Transmissionselektronenmikroskop entfalten.
In dieser Arbeit untersuchten Gianneschi, Jenkins und ihre Teams metallorganische Nanoröhren (MONTs). Als Unterklasse metallorganischer Gerüste haben MONTs ein hohes Potenzial für den Einsatz als Nanodrähte in elektronischen Miniaturbauteilen, nanoskaligen Lasern, Halbleitern und Sensoren zum Nachweis von Krebsbiomarkern und Viruspartikeln. MONTs sind jedoch wenig erforscht, da der Schlüssel zur Erschließung ihres Potenzials im Verständnis ihrer Entstehung liegt.
Zum ersten Mal beobachteten das Team von Northwestern und University of Tennessee die Entstehung von MONTs mit LPTEM und führten die ersten Messungen von finiten Bündeln von MONTs im Nanometerbereich durch.
Originalveröffentlichung:
"Elucidating the Growth of Metal-Organic Nanotubes Combining Isoreticular Synthesis with Liquid-Cell Transmisson Electron Microscopy"; J. Am. Chem. Soc.; 2019

Moderators

Moderator details

About the group: MaterialOberflächen - NanoFunktionalitäten MONaF

  • Founded: 14/04/2011
  • Members: 486
  • Visibility: open
  • Posts: 1.938
  • Comments: 89