Ähnliche Jobs

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

Technische Universität München

Fach- und Hochschulen

München

  • Art der Beschäftigung: Vollzeit
  • 48.000 € – 61.000 € (von XING geschätzt)
  • Vor Ort
  • Zu den Ersten gehören

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

Über diesen Job

Zurück zu Nachrichten-Bereich Browse in News

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

09.12.2025, Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten

The Group of Stefan Bauer [1] offers multiple Master’s thesis topics in modern generative modeling, focusing on discrete diffusion processes, discrete latent variable models, and iterative refinement methods. Most topics build on a recently released codebase for discrete diffusion ensuring a simplified start [2]. Discrete diffusion models define forward and reverse Markov processes on categorical state spaces, making them ideal for modalities such as text tokens, quantized image tokens, or symbolic representations [3]. In parallel, emerging looping models introduce a flexible class of iterative generative architectures that repeatedly update and refine a discrete state. Unlike autoregressive models (single-pass left-to-right) or classical diffusion (fixed noise schedules), looping models use learned iterative transitions that can converge toward high-quality samples through repeated refinement. This perspective unifies and generalizes several iterative generation paradigms and offers promising synergies with discrete diffusion. Together, these developments open an exciting research space combining discrete generative processes, iterative state refinement, and transformer-based architectural innovations. Available Master’s Thesis Topics 1. Hybrid Discrete Diffusion in Learned Discrete Latent Spaces 2. Scaling Discrete Diffusion Models to High-Dimensional Quantized Vision Tokens 3. Architecture-Level Advancements: Depth-Growth Strategies in Discrete Diffusion Models 4. Conditional Generative Modeling with Discrete Diffusion 5. Looping Models as Learned Refinement Operators for Discrete Diffusion [4] We welcome creative extensions or alternative ideas building on discrete diffusion, discrete latent modeling, and/or architecture-level innovations. We expect a strong background in machine learning, probabilistic modeling, and neural networks as well as solid programming skills in Python and PyTorch. Please submit a short interest statement indicating your preferred thesis topic (or proposing an alternative), along with a CV and academic transcript, to st.bauer@tum.de References: [1] https://scholar.google.com/citations?user=O-oICE8AAAAJ&hl=de [2] K. Nadimpalli* & V. Pauline* "UNI-D² , a unified codebase for discrete diffusion language models” https://github.com/nkalyanv99/UNI-D2 [3] V. Pauline et al "Foundations of Diffusion Models in General State Spaces: A Self-Contained Introduction” https://arxiv.org/abs/2512.05092 [4] F. Kapl* . E. Angelis* , T. Hoeppe* et al. "Do Depth-Grown Models Overcome The Curse Of Depth? An In-Depth Analysis”

The Group of Stefan Bauer [1] offers multiple Master’s thesis topics in modern generative modeling, focusing on discrete diffusion processes, discrete latent variable models, and iterative refinement methods. Most topics build on a recently released codebase for discrete diffusion ensuring a simplified start [2].

Discrete diffusion models define forward and reverse Markov processes on categorical state spaces, making them ideal for modalities such as text tokens, quantized image tokens, or symbolic representations [3]. In parallel, emerging looping models introduce a flexible class of iterative generative architectures that repeatedly update and refine a discrete state. Unlike autoregressive models (single-pass left-to-right) or classical diffusion (fixed noise schedules), looping models use learned iterative transitions that can converge toward high-quality samples through repeated refinement. This perspective unifies and generalizes several iterative generation paradigms and offers promising synergies with discrete diffusion.

Together, these developments open an exciting research space combining discrete
generative processes, iterative state refinement, and transformer-based architectural innovations.

Available Master’s Thesis Topics
1. Hybrid Discrete Diffusion in Learned Discrete Latent Spaces
2. Scaling Discrete Diffusion Models to High-Dimensional Quantized Vision Tokens
3. Architecture-Level Advancements: Depth-Growth Strategies in Discrete Diffusion Models
4. Conditional Generative Modeling with Discrete Diffusion
5. Looping Models as Learned Refinement Operators for Discrete Diffusion [4]

We welcome creative extensions or alternative ideas building on discrete diffusion, discrete latent modeling, and/or architecture-level innovations.
We expect a strong background in machine learning, probabilistic modeling, and neural networks as well as solid programming skills in Python and PyTorch.

Please submit a short interest statement indicating your preferred thesis topic (or proposing an alternative), along with a CV and academic transcript, to st.bauer@tum.de

References:
[1] https://scholar.google.com/citations?user=O-oICE8AAAAJ&hl=de
[2] K. Nadimpalli* & V. Pauline* "UNI-D² , a unified codebase for discrete diffusion language models” https://github.com/nkalyanv99/UNI-D2
[3] V. Pauline et al "Foundations of Diffusion Models in General State Spaces: A
Self-Contained Introduction” https://arxiv.org/abs/2512.05092
[4] F. Kapl* . E. Angelis* , T. Hoeppe* et al. "Do Depth-Grown Models Overcome The Curse Of Depth? An In-Depth Analysis”

Kontakt: st.bauer@tum.de

Gehalts-Prognose

Unternehmens-Details

company logo

Technische Universität München

Fach- und Hochschulen

5.001-10.000 Mitarbeitende

München, Deutschland

Wir benachrichtigen Dich gern über ähnliche Jobs in München:

Ähnliche Jobs

Postdoc in Computer Science – Institute for AI and Informatics in Medicine (AIIM)

Technische Universität München

München + 0 weitere

52.000 €69.000 €

Postdoc in Computer Science – Institute for AI and Informatics in Medicine (AIIM)

München + 0 weitere

Technische Universität München

52.000 €69.000 €

Postdoc in Computer Science - Institute for AI and Informatics in Medicine (AIIM)

Technische Universität München

München + 0 weitere

52.500 €80.500 €

Postdoc in Computer Science - Institute for AI and Informatics in Medicine (AIIM)

München + 0 weitere

Technische Universität München

52.500 €80.500 €

PostDoc/Senior Scientist in Robotics and Geriatronics

Technische Universität München

München + 0 weitere

54.000 €69.000 €

PostDoc/Senior Scientist in Robotics and Geriatronics

München + 0 weitere

Technische Universität München

54.000 €69.000 €

PhD Position in Bridge Risk Assessment with Remote Sensing and Machine Learning

Technische Universität München

München + 0 weitere

51.500 €68.500 €

PhD Position in Bridge Risk Assessment with Remote Sensing and Machine Learning

München + 0 weitere

Technische Universität München

51.500 €68.500 €

PhD Position in Bridge Risk Assessment with Remote Sensing and Machine Learning

Technische Universität München

München + 0 weitere

54.000 €72.500 €

PhD Position in Bridge Risk Assessment with Remote Sensing and Machine Learning

München + 0 weitere

Technische Universität München

54.000 €72.500 €

Postdoc Position in Advanced Analytics m/w/d

Technische Universität München

München + 0 weitere

53.000 €78.000 €

Postdoc Position in Advanced Analytics m/w/d

München + 0 weitere

Technische Universität München

53.000 €78.000 €

Research Associate Position in Data Management and GeoAI

Technische Universität München

München + 0 weitere

Research Associate Position in Data Management and GeoAI

München + 0 weitere

Technische Universität München

Research assistant (m/f/d) for AI in Health and Nutrition

Mobile and Distributed Systems Group Department of Computer Science

München + 0 weitere

57.000 €79.000 €

Research assistant (m/f/d) for AI in Health and Nutrition

München + 0 weitere

Mobile and Distributed Systems Group Department of Computer Science

57.000 €79.000 €

AI Scientist (f/m/x) – Virtual Tissue Staining & Cancer Diagnostics

Helmholtz Zentrum München

Oberschleißheim + 0 weitere

51.000 €81.500 €

AI Scientist (f/m/x) – Virtual Tissue Staining & Cancer Diagnostics

Oberschleißheim + 0 weitere

Helmholtz Zentrum München

51.000 €81.500 €