Ähnliche Jobs

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

Technische Universität München

Fach- und Hochschulen

München

  • Art der Beschäftigung: Vollzeit
  • 48.000 € – 61.000 € (von XING geschätzt)
  • Vor Ort

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

Über diesen Job

Sitemap >Schwarzes Brett >Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten > Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models
Zurück zu Nachrichten-Bereich Browse in News

Studienarbeiten - Generative Modeling with Discrete Diffusion and Iterative Refinement Models

09.12.2025, Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten

The Group of Stefan Bauer [1] offers multiple Master’s thesis topics in modern generative modeling, focusing on discrete diffusion processes, discrete latent variable models, and iterative refinement methods. Most topics build on a recently released codebase for discrete diffusion ensuring a simplified start [2]. Discrete diffusion models define forward and reverse Markov processes on categorical state spaces, making them ideal for modalities such as text tokens, quantized image tokens, or symbolic representations [3]. In parallel, emerging looping models introduce a flexible class of iterative generative architectures that repeatedly update and refine a discrete state. Unlike autoregressive models (single-pass left-to-right) or classical diffusion (fixed noise schedules), looping models use learned iterative transitions that can converge toward high-quality samples through repeated refinement. This perspective unifies and generalizes several iterative generation paradigms and offers promising synergies with discrete diffusion. Together, these developments open an exciting research space combining discrete generative processes, iterative state refinement, and transformer-based architectural innovations. Available Master’s Thesis Topics 1. Hybrid Discrete Diffusion in Learned Discrete Latent Spaces 2. Scaling Discrete Diffusion Models to High-Dimensional Quantized Vision Tokens 3. Architecture-Level Advancements: Depth-Growth Strategies in Discrete Diffusion Models 4. Conditional Generative Modeling with Discrete Diffusion 5. Looping Models as Learned Refinement Operators for Discrete Diffusion [4] We welcome creative extensions or alternative ideas building on discrete diffusion, discrete latent modeling, and/or architecture-level innovations. We expect a strong background in machine learning, probabilistic modeling, and neural networks as well as solid programming skills in Python and PyTorch. Please submit a short interest statement indicating your preferred thesis topic (or proposing an alternative), along with a CV and academic transcript, to st.bauer@tum.de References: [1] https://scholar.google.com/citations?user=O-oICE8AAAAJ&hl=de [2] K. Nadimpalli* & V. Pauline* "UNI-D² , a unified codebase for discrete diffusion language models” https://github.com/nkalyanv99/UNI-D2 [3] V. Pauline et al "Foundations of Diffusion Models in General State Spaces: A Self-Contained Introduction” https://arxiv.org/abs/2512.05092 [4] F. Kapl* . E. Angelis* , T. Hoeppe* et al. "Do Depth-Grown Models Overcome The Curse Of Depth? An In-Depth Analysis”

The Group of Stefan Bauer [1] offers multiple Master’s thesis topics in modern generative modeling, focusing on discrete diffusion processes, discrete latent variable models, and iterative refinement methods. Most topics build on a recently released codebase for discrete diffusion ensuring a simplified start [2].

Discrete diffusion models define forward and reverse Markov processes on categorical state spaces, making them ideal for modalities such as text tokens, quantized image tokens, or symbolic representations [3]. In parallel, emerging looping models introduce a flexible class of iterative generative architectures that repeatedly update and refine a discrete state. Unlike autoregressive models (single-pass left-to-right) or classical diffusion (fixed noise schedules), looping models use learned iterative transitions that can converge toward high-quality samples through repeated refinement. This perspective unifies and generalizes several iterative generation paradigms and offers promising synergies with discrete diffusion.

Together, these developments open an exciting research space combining discrete
generative processes, iterative state refinement, and transformer-based architectural innovations.

Available Master’s Thesis Topics
1. Hybrid Discrete Diffusion in Learned Discrete Latent Spaces
2. Scaling Discrete Diffusion Models to High-Dimensional Quantized Vision Tokens
3. Architecture-Level Advancements: Depth-Growth Strategies in Discrete Diffusion Models
4. Conditional Generative Modeling with Discrete Diffusion
5. Looping Models as Learned Refinement Operators for Discrete Diffusion [4]

We welcome creative extensions or alternative ideas building on discrete diffusion, discrete latent modeling, and/or architecture-level innovations.
We expect a strong background in machine learning, probabilistic modeling, and neural networks as well as solid programming skills in Python and PyTorch.

Please submit a short interest statement indicating your preferred thesis topic (or proposing an alternative), along with a CV and academic transcript, to st.bauer@tum.de

References:
[1] https://scholar.google.com/citations?user=O-oICE8AAAAJ&hl=de
[2] K. Nadimpalli* & V. Pauline* "UNI-D² , a unified codebase for discrete diffusion language models” https://github.com/nkalyanv99/UNI-D2
[3] V. Pauline et al "Foundations of Diffusion Models in General State Spaces: A
Self-Contained Introduction” https://arxiv.org/abs/2512.05092
[4] F. Kapl* . E. Angelis* , T. Hoeppe* et al. "Do Depth-Grown Models Overcome The Curse Of Depth? An In-Depth Analysis”

Kontakt: st.bauer@tum.de

Gehalts-Prognose

Unternehmens-Details

company logo

Technische Universität München

Fach- und Hochschulen

5.001-10.000 Mitarbeitende

München, Deutschland

Ähnliche Jobs

Lecturer Applied Artificial Intelligence Introduction to NLP (m/f/d)

IU Internationale Hochschule

Bad Honnef + 0 weitere

Lecturer Applied Artificial Intelligence Introduction to NLP (m/f/d)

Bad Honnef + 0 weitere

IU Internationale Hochschule

Lecturer Computer Science Data Structures and Java Class Library (m/f/d)

IU Internationale Hochschule

Bad Honnef + 0 weitere

Lecturer Computer Science Data Structures and Java Class Library (m/f/d)

Bad Honnef + 0 weitere

IU Internationale Hochschule

Lecturer Computer Science Deep Learning (m/f/d)

IU Internationale Hochschule

Berlin + 0 weitere

Lecturer Computer Science Deep Learning (m/f/d)

Berlin + 0 weitere

IU Internationale Hochschule

Wissenschaftliche*r Mitarbeiter*in – Generative KI & Software Engineering

Universität Hildesheim

Hildesheim + 0 weitere

52.656 €74.844 €

Neu · 

Wissenschaftliche*r Mitarbeiter*in – Generative KI & Software Engineering

Hildesheim + 0 weitere

Universität Hildesheim

52.656 €74.844 €

Neu · 

Lecturer Cyber Security Artificial Intelligence (m/f/d)

IU Internationale Hochschule

Berlin + 0 weitere

Lecturer Cyber Security Artificial Intelligence (m/f/d)

Berlin + 0 weitere

IU Internationale Hochschule

Lecturer Theoretical Computer Science and Mathematical Logic (m/f/d)

IU Internationale Hochschule

Berlin + 0 weitere

Lecturer Theoretical Computer Science and Mathematical Logic (m/f/d)

Berlin + 0 weitere

IU Internationale Hochschule

Lecturer Theoretical Computer Science and Mathematical Logic (m/f/d)

IU Internationale Hochschule

Bad Honnef + 0 weitere

Lecturer Theoretical Computer Science and Mathematical Logic (m/f/d)

Bad Honnef + 0 weitere

IU Internationale Hochschule

Wissenschaftliche/r Mitarbeiter/in (m/w/d), Lehrstuhl für Unternehmensführung

Technical University of Munich

München + 0 weitere

57.500 €69.500 €

Wissenschaftliche/r Mitarbeiter/in (m/w/d), Lehrstuhl für Unternehmensführung

München + 0 weitere

Technical University of Munich

57.500 €69.500 €

PhD Position: Deep Learning for Medical and Scientific Imaging

Technische Universität München

München + 0 weitere

54.000 €73.000 €

PhD Position: Deep Learning for Medical and Scientific Imaging

München + 0 weitere

Technische Universität München

54.000 €73.000 €