Ähnliche Jobs

Master’s Thesis: Monocular 3D Object Detection

Master’s Thesis: Monocular 3D Object Detection

Master’s Thesis: Monocular 3D Object Detection

Master’s Thesis: Monocular 3D Object Detection

Kapsch TrafficCom AG

Internet, IT

Wien

  • Art der Anstellung: Vollzeit
  • Vor Ort
  • Zu den Ersten gehören

Master’s Thesis: Monocular 3D Object Detection

Über diesen Job

  • Vienna

Introduction: Conventional single-shot object detection neural networks, such as YOLO, have achieved remarkable success in identifying and localizing objects within 2D images using axis-aligned rectangular bounding boxes. While effective for many applications, these 2D representations lack crucial information about the object's true 3D pose, dimensions, and orientation in the real world. This limitation becomes significant in applications requiring a deeper understanding of the scene, such as autonomous driving, robotics, and augmented reality.

The goal of this thesis is to extend the capabilities of single-shot object detection networks by developing, training, and evaluating a model that directly predicts oriented 3D bounding boxes from a single monocular image. This includes estimating the object's 3D location, its dimensions (length, width, height), and its 3D orientation.

Motivation: Accurate and efficient monocular 3D object detection is a crucial task in various computer vision applications. Relying on a single camera offers advantages in terms of cost, simplicity, and ease of deployment compared to multi-camera or LiDAR-based systems. This thesis aims to contribute to the advancement of monocular 3D object detection by exploring and implementing a single-shot approach capable of predicting oriented 3D bounding boxes.

Tasks:

Literature Review on Monocular 3D Object Detection CNNs:

  • Conduct a comprehensive review of existing research in monocular 3D object detection using Convolutional Neural Networks (CNNs).
  • Address the issue of camera calibration: Thoroughly examine how different methods handle camera calibration parameters (intrinsic and extrinsic) and their impact on the accuracy of 3D object detection.
  • Analyze the strengths and weaknesses of different network architectures.

Investigation of System Constraints:

  • Identify and analyze the inherent challenges and constraints of monocular 3D object detection compared to methods utilizing depth information.
  • Consider factors such as:
    • Scale ambiguity: The difficulty in determining the absolute size and distance of an object from a single 2D image.
    • Occlusion: How occluded objects can affect the accuracy of 3D bounding box prediction.
    • Viewpoint variation: The impact of different viewing angles on the perceived shape and size of objects.
    • Computational resources: Consider the computational complexity and real-time requirements for potential applications.

Design and Development of an Oriented 3D Bounding Box CNN:

  • Based on the literature review and the identified system constraints, design a novel or adapt an existing single-shot object detection CNN architecture to predict oriented 3D bounding boxes.
  • This will involve:
    • Choosing an appropriate backbone network.
    • Designing the output layers to predict the parameters of the 3D bounding box (e.g., center coordinates, dimensions, Euler angles or quaternions for orientation).
    • Defining a suitable loss function that incorporates the different aspects of 3D bounding box prediction.

Training and Evaluation on Real-World Data:

  • Select a suitable real-world dataset(s) with 3D object annotations (both Kapsch proriatory and public).
  • Implement and train the model
  • Evaluate the performance of the trained model using appropriate 3D object detection metrics (e.g., Average Precision with different IoU thresholds in 3D space).
  • Analyze the results, identify limitations, and discuss potential future improvements.

Expected Deliverables:

A comprehensive literature review on monocular 3D object detection This thesis provides an excellent opportunity to delve into the challenging and rapidly evolving field of monocular 3D object detection. The student will gain practical experience in literature review, deep learning model design, implementation, training, and evaluation on real-world data.

  • CNNs.
  • A detailed description of the designed and implemented model architecture.
  • A thorough evaluation of the model's performance on real-world data.
  • A written thesis document summarizing the research process, findings, and conclusions.
  • Potentially, a working implementation of the developed model.

Your Profile:

  • Required Background Studies in Computer Science, Software Engineering, Information Technology, Geoinformatics or related fields

  • Fluent English skills

  • Interest in technology

  • Willingness and ability to work independently

  • Excellent communication and teamwork skills

  • Conscientiousness and reliability

  • Strong analytical skills with a precise and structured approach

  • Start: Immediately

  • Duration: 3–6 months

  • Successful completion of the master’s thesis will be rewarded with €3,000.

Contact:

Edwin.Fruehwirth@kapsch.net

Unternehmens-Details

company logo

Kapsch TrafficCom AG

Internet, IT

1.001-5.000 Mitarbeitende

Vienna, Österreich

Bewertung von Mitarbeitenden

Vorteile für Mitarbeitende

Flexible Arbeitszeiten
Home-Office
Kantine
Restaurant-Tickets
Kinderbetreuung
Betriebliche Altersvorsorge
Barrierefreiheit
Gesundheitsmaßnahmen
Betriebsarzt
Training
Parkplatz
Günstige Anbindung
Vorteile für Mitarbeitende
Firmenwagen
Smartphone
Gewinnbeteiligung
Veranstaltungen
Privat das Internet nutzen
Hunde willkommen

Unternehmenskultur

Unternehmenskultur

298 Mitarbeitende haben abgestimmt: Sie bewerten die Unternehmenskultur bei Kapsch TrafficCom AG als eher modern. Der Branchen-Durchschnitt geht übrigens in Richtung modern

Mehr Infos anzeigen

Wir benachrichtigen Dich gern über ähnliche Jobs in Wien:

Ähnliche Jobs

Externes Job-Angebot. Partner-Angebot

Tenure Track-Professur für Mathematische Grundlagen der Data Science

Universität Wien

Wien

Externes Job-Angebot. Partner-Angebot

Tenure Track-Professur für Mathematische Grundlagen der Data Science

Wien

Universität Wien

Externes Job-Angebot. Partner-Angebot

Assistant Professorship (all genders) - Tenure Track Information and Communication Technologies in Automation

Technische Universität Wien

Wien

Neu · 

Externes Job-Angebot. Partner-Angebot

Assistant Professorship (all genders) - Tenure Track Information and Communication Technologies in Automation

Wien

Technische Universität Wien

Neu · 

Digital Research and AI Professional (all genders)

RHI Magnesita

Wien

55.000 €79.000 €

Digital Research and AI Professional (all genders)

Wien

RHI Magnesita

55.000 €79.000 €

Senior Algorithm Development Expert (f/m/x)

enspired GmbH

Wien

Senior Algorithm Development Expert (f/m/x)

Wien

enspired GmbH

Externes Job-Angebot. Partner-Angebot

University assistant predoctoral in Business Analytics and Operations Research

Universität Wien

Wien

Externes Job-Angebot. Partner-Angebot

University assistant predoctoral in Business Analytics and Operations Research

Wien

Universität Wien

Senior Data Scientist (w/m/d) Digital Twinning

Green Tech Valley Cluster GmbH

Wien

54.500 €68.000 €

Senior Data Scientist (w/m/d) Digital Twinning

Wien

Green Tech Valley Cluster GmbH

54.500 €68.000 €

Data Scientist - Artificial Intelligence (m/w/x)

IBM Client Innovation Center Austria GmbH

Wien

49.000 €66.000 €

Neu · 

Data Scientist - Artificial Intelligence (m/w/x)

Wien

IBM Client Innovation Center Austria GmbH

49.000 €66.000 €

Neu · 

Research Software Engineer

Institute of Science and Technology Austria (ISTA)

Klosterneuburg

Research Software Engineer

Klosterneuburg

Institute of Science and Technology Austria (ISTA)

Https://euraxess.ec.europa.eu/jobs/379777

Universität für Bodenkultur Wien

Wien

33.000 €53.000 €

Https://euraxess.ec.europa.eu/jobs/379777

Wien

Universität für Bodenkultur Wien

33.000 €53.000 €