Applied Algorithms Engineer - Information Retrieval

Applied Algorithms Engineer - Information Retrieval

Applied Algorithms Engineer - Information Retrieval

Applied Algorithms Engineer - Information Retrieval

Omnilex

Informationsdienste

Zürich

  • Art der Beschäftigung: Vollzeit
  • 8.000 CHF – 13.000 CHF (Unternehmensangabe)
  • Vor Ort
  • Zu den Ersten gehören

Applied Algorithms Engineer - Information Retrieval

Passt der Job zu Dir?

Mit einem XING Profil siehst Du gleich, welche Deiner Fähigkeiten und Wünsche konkret zum Job passen. Damit Du Dich nicht nur im Home-Office wie zuhause fühlst.

Jetzt anmelden und herausfinden

Über diesen Job

🌟 About You

You like problems with a clear objective, messy real-world constraints, and lots of room for cleverness.

If you’ve done competitive programming / optimization competitions, you’ll feel at home here: legal search is basically an optimization game where you trade off quality (F2/NDCG), latency (p95), and cost under strict correctness constraints (citations, traceability, jurisdiction). You’ll build scoring functions, retrieval pipelines, rerankers, and evaluation harnesses; and you’ll ship improvements that users notice immediately.

You enjoy:

  • Turning vague user intent into formal signals + algorithms
  • Designing fast, low-latency systems under tight budgets
  • Running ablations, debugging failure cases, and iterating quickly
  • Owning the full loop: idea → benchmark → ship → measure

🚀 About Omnilex

Omnilex is a young, dynamic AI legal tech startup with roots at ETH Zurich. Our interdisciplinary team (14+ people) empowers legal professionals by building AI systems for legal research and answering complex legal questions; across external sources, customer-internal documents, and our own AI-first legal commentaries.

🧠 What You’ll Work On

As an Applied Algorithms Engineer - Information Retrieval you’ll build the retrieval + ranking + reasoning backbone of our legal research experience.

Tasks

🛠 Responsibilities

  • Retrieval & ranking beyond the defaults

  • Hybrid retrieval (sparse + dense), custom reranking, multi-stage pipelines

  • Domain-specific workflows (e.g., knowledge graphs, citation-aware expansions, jurisdiction filters)

  • Scoring & features (where algorithms meet relevance)

  • Build ranking signals from: citations, authority, recency, jurisdiction, document structure, paragraph/section anchors

  • Combine signals into robust scoring functions and reranking strategies

  • Query understanding & intent routing

  • Classify query intent, detect constraints (“Swiss law”, “latest”, “doctrine vs. case law”), rewrite/expand queries

  • Route to the right retrieval strategy with minimal overhead

  • Evaluation that actually guides shipping

  • Build offline eval sets, define metrics, run quick ablations

  • Use production feedback + dashboards to close the loop (what improved? what broke?)

  • Search infrastructure + performance engineering

  • Tune indices/analyzers/embeddings, manage recall vs. precision, deduplicate near-duplicates

  • Engineer for p95 latency: caching, batching, early-exit strategies, fallbacks

  • LLM-powered product systems

  • Design and ship production-grade LLM workflows (RAG, tool use, citation-grounded answers)

  • Keep outputs traceable, verifiable, and safe for legal professionals

  • Collaboration with domain experts

  • Work closely with legal experts to translate pain points into ranking logic

  • Document decisions and build playbooks others can extend

Requirements

✅ Minimum qualifications

  • Strong hands-on experience improving search / retrieval systems in production (hybrid retrieval, reranking, query understanding).
  • Proven experience building and deploying LLM-based products from prototype to production.
  • Strong algorithms background (data structures, complexity, graphs, probability/statistics) and practical SQL.
  • Proficiency in TypeScript/Node.js (our core stack).
  • Experience with one or more of: Azure AI Search, pgvector/PostgreSQL, OpenSearch/Elasticsearch, or similar.
  • Familiarity with embedding models + cross-encoders, and the ability to reason about latency/throughput/quality trade-offs.
  • Ownership mindset, clear communication, bias for action.
  • Proficiency in English.
  • Full-time availability. Zurich-based with on-site presence at least 2 days/week (hybrid).

🎯 Preferred qualifications (nice-to-have)

  • Swiss work permit or EU/EFTA citizenship.
  • Working proficiency in German.
  • Experience with evaluation pipelines (human labeling, inter-annotator agreement, error analysis, AI-as-judge—used pragmatically).
  • Knowledge of sparse/dense IR methods (BM25 variants, SPLADE, e5/BGE, ColBERT-style) and semantic reranking.
  • Experience operating services (Docker; basic Kubernetes/serverless is a plus).
  • Familiarity with Azure / NestJS / Next.js.
  • Exposure to legal systems (especially Switzerland, Germany, USA).

🧩 Competitive programming folks: what maps directly

  • You’ll constantly do “contest-style” thinking:

  • define objective → pick strategy → optimize bottlenecks → prove it with measurements

  • The difference is: the test cases are real users, and the constraints include cost + latency + trust + citations.

Benefits

🤝 Benefits

  • Direct impact: your ranking and retrieval changes immediately improve user trust and result quality.
  • Autonomy & ownership: shape the core search pipeline end-to-end (intent → retrieval → reranking → grounded answers).
  • Team: sharp, interdisciplinary people at the intersection of AI, search, and law.
  • Compensation: CHF 8’000–13’000/month + ESOP, depending on experience and skills.

If you want to apply your algorithmic instincts to something that matters, and ship improvements that lawyers feel the same day, press Apply.

Ähnliche Jobs

Externes Job-Angebot. Von einem Partner.

Quantitative Researcher

Anson McCade

Zürich + 0 weitere

89.500 CHF123.000 CHF

Neu · 

Externes Job-Angebot. Von einem Partner.

Quantitative Researcher

Zürich + 0 weitere

Anson McCade

89.500 CHF123.000 CHF

Neu · 

Machine Learning Engineer - Wearables & Sensor Data (m/w/d) 80-100%

greenteg AG

Rümlang + 0 weitere

80.000 €105.000 €

Machine Learning Engineer - Wearables & Sensor Data (m/w/d) 80-100%

Rümlang + 0 weitere

greenteg AG

80.000 €105.000 €

AI Engineer - Synthetic Data Generation

Omnilex

Zürich + 0 weitere

8.000 CHF13.000 CHF

AI Engineer - Synthetic Data Generation

Zürich + 0 weitere

Omnilex

8.000 CHF13.000 CHF

Freelance Engineering Experts at AI Startup

Lightly AG

Zürich + 0 weitere

Freelance Engineering Experts at AI Startup

Zürich + 0 weitere

Lightly AG

Research Software Engineer (Data Assimilation for Environmental Modeling) (m/f/d)

Eawag

Dübendorf + 0 weitere

93.500 CHF114.500 CHF

Research Software Engineer (Data Assimilation for Environmental Modeling) (m/f/d)

Dübendorf + 0 weitere

Eawag

93.500 CHF114.500 CHF

Research Scientist, ML Systems - PhD New College Grad 2026

NVIDIA

Zürich + 0 weitere

87.000 CHF105.500 CHF

Research Scientist, ML Systems - PhD New College Grad 2026

Zürich + 0 weitere

NVIDIA

87.000 CHF105.500 CHF

Research Assistant: Explainable AI for Intrusion Detection Systems 40 - 50 %

ZHAW Zürcher Hochschule für Angewandte Wissenschaften

Winterthur + 0 weitere

94.000 CHF120.000 CHF

Research Assistant: Explainable AI for Intrusion Detection Systems 40 - 50 %

Winterthur + 0 weitere

ZHAW Zürcher Hochschule für Angewandte Wissenschaften

94.000 CHF120.000 CHF

Machine Learning Research, Multimodal Foundation Models

Apple Inc

Zürich + 0 weitere

81.000 CHF117.500 CHF

Machine Learning Research, Multimodal Foundation Models

Zürich + 0 weitere

Apple Inc

81.000 CHF117.500 CHF

Computer Engineer (w/m/d) gesucht für Tandem mit geflüchteter Äthiopierin im Bezirk Dietikon

VSJF - Verband Schweizerischer Jüdischer Fürsorgen

Dietikon + 0 weitere

80.500 CHF100.000 CHF

Neu · 

Computer Engineer (w/m/d) gesucht für Tandem mit geflüchteter Äthiopierin im Bezirk Dietikon

Dietikon + 0 weitere

VSJF - Verband Schweizerischer Jüdischer Fürsorgen

80.500 CHF100.000 CHF

Neu ·