Navigation überspringen

Beatriz Simoes

Bis 2019, Statistics, University of Brasília
Berlin, Deutschland

Fähigkeiten und Kenntnisse

Statistik
Analytik
Data Science
Data Analysis
Machine Learning

Werdegang

Berufserfahrung von Beatriz Simoes

  • 1 Jahr und 10 Monate, Dez. 2021 - Sep. 2023

    Data Scientist

    Ab InBev

    At AmbevTech (AB InBev), I had the opportunity to work with the most varied types of resources, which gave me a highly qualified experience such as: developing and deploying machine learning models, A/B tests, clearing data, high experience in platforms like databricks, git, azure AI services and more.

  • 1 Jahr und 3 Monate, Sep. 2020 - Nov. 2021

    Data Scientist

    MCTI

    I have worked in a project with Data Collection and Data Analysis. Most of data describe information about financial products and they are extracted from their respectively websites. The data is collected using webscrapers like the BeautifulSoup and Requests libraries. They are later used for training Machine Learning classification models with Keras, Scikit-learn and Tensorflow. The project has been developed mostly in Python with some usages in R.

  • 11 Monate, Jan. 2019 - Nov. 2019

    Data Scientist Intern

    ANAC

  • 7 Monate, März 2017 - Sep. 2017

    Statistician Intern

    Detran

Ausbildung von Beatriz Simoes

  • 2 Jahre und 9 Monate, März 2020 - Nov. 2022

    Statistics

    University of Brasília

    We propose a new generalization of the three-parameter Weibull distribution, a new invertible bimodal Weibull model (NIBW), which can be bimodal and its cumulative distribution function and quantile function have a simple and closed form, which makes it very interesting in simulation procedures and for the calculation of risk measures in the applied areas.

  • 4 Jahre und 4 Monate, Sep. 2015 - Dez. 2019

    Statistics

    University of Brasília

    Due to the lack of discrete probabilistic models in the area, proposing a little-studied distribution that has a good fit to censored data is of great interest. The data set used refers to the Special Zone of Social Interest (ZEIS) policy and the proposed model verifies the influence of each covariate on the time for Brazilian municipalities to adhere to the policy. Finally, residual analysis is used to validate the model. The analyzes were carried out using the R software.

XING – Das Jobs-Netzwerk

  • Über eine Million Jobs

    Entdecke mit XING genau den Job, der wirklich zu Dir passt.

  • Persönliche Job-Angebote

    Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.

  • 22 Mio. Mitglieder

    Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.

  • Kostenlos profitieren

    Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.

21 Mio. XING Mitglieder, von A bis Z