Ähnliche Jobs

Masterarbeit / Semesterarbeit / IDP (m/w/d): Statistical Methods and Machine Learning in Medical Engineering – Foot Landmark and Bone Registration Estimation

Masterarbeit / Semesterarbeit / IDP (m/w/d): Statistical Methods and Machine Learning in Medical Engineering – Foot Landmark and Bone Registration Estimation

Masterarbeit / Semesterarbeit / IDP (m/w/d): Statistical Methods and Machine Learning in Medical Engineering – Foot Landmark and Bone Registration Estimation

Masterarbeit / Semesterarbeit / IDP (m/w/d): Statistical Methods and Machine Learning in Medical Engineering – Foot Landmark and Bone Registration Estimation

Technische Universität München

Fach- und Hochschulen

München

  • Art der Anstellung: Studierende
  • Vor Ort

Masterarbeit / Semesterarbeit / IDP (m/w/d): Statistical Methods and Machine Learning in Medical Engineering – Foot Landmark and Bone Registration Estimation

Über diesen Job

Zurück zu Nachrichten-Bereich Browse in News

Masterarbeit / Semesterarbeit / IDP (m/w/d): Statistical Methods and Machine Learning in Medical Engineering – Foot Landmark and Bone Registration Estimation

20.08.2025, Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten

Masterarbeit / Semesterarbeit / IDP – Informatik (m/w/d)

Background
In the diagnosis of foot-related conditions, it is not always feasible or advisable to acquire CT scans. This project aims to explore the extent to which CT imaging can be avoided and whether features contained in CT data can be estimated from 3D foot surface scans – potentially lowering patient radiation exposure and speeding up diagnosis. Several sub-projects are available as part of this research, which can be pursued in parallel and in close cooperation.

· Generation of a gold-standard dataset:CT data will be segmented using an interactive nnUNet pipeline, and anatomical landmarks/points of interest will be annotated.

Sub-Project 1 – Statistical Shape Model (SSM) of the Foot Surface

· Develop an SSM representing the foot shape, based on the foot surface geometry extracted from CT data.

o Conduct a literature review on state-of-the-art SSM tools and methods (e.g., Scalismo , https://scalismo.org ).

o Choose a method/framework.

· Apply the SSM to both CT test datasets and 3D foot scan datasets & compare the distances of selected surface points between:
(a) the original CT surface,
(b) the CT-based SSM surface, and
(c) the scan-based SSM surface.

Sub-Project 2 – Machine Learning-Based Bone Registration

· Conduct a literature review on state-of-the-art bone registration (alignment of estimated bone structures to a reference) methods.

· Assess identified architectures in terms of suitability under given (hardware) constraints and select one for implementation.

· Train a model using the chosen architecture on the available training data, then validate it on test data.

Sub-Project 3 – Machine Learning-Based Estimation of Internal Landmarks

· Similar to Sub-Project 2, but instead of estimating full bone geometries, the focus will be on predicting discrete internal landmarks and features.

· Work will be carried out in close cooperation with Sub-Project 2 to ensure methodological alignment.

· Strong interest in the research topic and in exploratory investigations

· Independent working style

· Logical thinking skills and experience with statistical methods or machine learning

· Experience in data processing, with awareness of data quality and attention to detail

· Ability to work in an interdisciplinary team

· Preferably , experience in Python

SA/MA/ IDP( For students of the departments: Informatics and Mechanical Engineering)

For more information please contact (both):

Patrick Carqueville M.Sc . | patrick.carqueville@tum.de

Robin Compeyron M.Sc. | robin.compeyron@tum.de

Statistical Methods and Machine Learning in Medical Engineering – Foot Landmark and Bone Registration Estimation

Background
In the diagnosis of foot-related conditions, it is not always feasible or advisable to acquire CT scans. This project aims to explore the extent to which CT imaging can be avoided and whether features contained in CT data can be estimated from 3D foot surface scans – potentially lowering patient radiation exposure and speeding up diagnosis. Several sub-projects are available as part of this research, which can be pursued in parallel and in close cooperation.

· Generation of a gold-standard dataset:CT data will be segmented using an interactive nnUNet pipeline, and anatomical landmarks/points of interest will be annotated.

Sub-Project 1 – Statistical Shape Model (SSM) of the Foot Surface

· Develop an SSM representing the foot shape, based on the foot surface geometry extracted from CT data.

o Conduct a literature review on state-of-the-art SSM tools and methods (e.g., Scalismo, https://scalismo.org ).

o Choose a method/framework.

· Apply the SSM to both CT test datasets and 3D foot scan datasets & compare the distances of selected surface points between:
(a) the original CT surface,
(b) the CT-based SSM surface, and
(c) the scan-based SSM surface.

Sub-Project 2 – Machine Learning-Based Bone Registration

· Conduct a literature review on state-of-the-art bone registration (alignment of estimated bone structures to a reference) methods.

· Assess identified architectures in terms of suitability under given (hardware) constraints and select one for implementation.

· Train a model using the chosen architecture on the available training data, then validate it on test data.

Sub-Project 3 – Machine Learning-Based Estimation of Internal Landmarks

· Similar to Sub-Project 2, but instead of estimating full bone geometries, the focus will be on predicting discrete internal landmarks and features.

· Work will be carried out in close cooperation with Sub-Project 2 to ensure methodological alignment.

· Strong interest in the research topic and in exploratory investigations

· Independent working style

· Logical thinking skills and experience with statistical methods or machine learning

· Experience in data processing, with awareness of data quality and attention to detail

· Ability to work in an interdisciplinary team

· Preferably, experience in Python

SA/MA/IDP (For students of the departments: Informatics and Mechanical Engineering)

For more information please contact (both):

Patrick Carqueville M.Sc. | patrick.carqueville@tum.de

Robin Compeyron M.Sc. | robin.compeyron@tum.de

Kontakt: patrick.carqueville@tum.de, robin.compeyron@tum.de

Unternehmens-Details

company logo

Technische Universität München

Fach- und Hochschulen

5.001-10.000 Mitarbeitende

München, Deutschland

Bewertung von Mitarbeitenden

Vorteile für Mitarbeitende

Flexible Arbeitszeiten
Home-Office
Kantine
Restaurant-Tickets
Kinderbetreuung
Betriebliche Altersvorsorge
Barrierefreiheit
Gesundheitsmaßnahmen
Betriebsarzt
Training
Parkplatz
Günstige Anbindung
Vorteile für Mitarbeitende
Smartphone
Gewinnbeteiligung
Veranstaltungen
Privat das Internet nutzen
Hunde willkommen

Unternehmenskultur

Unternehmenskultur

314 Mitarbeitende haben abgestimmt: Sie bewerten die Unternehmenskultur bei Technische Universität München als ausgeglichen zwischen traditionell und modern.Der Branchen-Durchschnitt tendiert übrigens in Richtung modern

Mehr Infos anzeigen

Wir benachrichtigen Dich gern über ähnliche Jobs in München:

Ähnliche Jobs

PhD Student (m/f/d) (m/w/d)

Ludwig-Maximilians-Universität München

München

Neu · 

PhD Student (m/f/d) (m/w/d)

München

Ludwig-Maximilians-Universität München

Neu · 

Postdoctoral Position in “Robot motion and control algorithms for soft material handling”, Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich (TUM)

Technische Universität München

München

52.500 €66.500 €

Postdoctoral Position in “Robot motion and control algorithms for soft material handling”, Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich (TUM)

München

Technische Universität München

52.500 €66.500 €

Wissenschaftlichen Mitarbeitender (m/w/d) für die Forschungsgruppe Engineering for Work

Technische Universität München

München

52.500 €61.000 €

Wissenschaftlichen Mitarbeitender (m/w/d) für die Forschungsgruppe Engineering for Work

München

Technische Universität München

52.500 €61.000 €

PhD position on Causal Machine Learning & Earth Observation for Urban Flood Resilience (AUROrA Project)

Technische Universität München

München

50.000 €68.500 €

PhD position on Causal Machine Learning & Earth Observation for Urban Flood Resilience (AUROrA Project)

München

Technische Universität München

50.000 €68.500 €

Mandatory Internship - Large Language Model Interpretability

Siemens AG

München

Mandatory Internship - Large Language Model Interpretability

München

Siemens AG

Doctoral and Postdoctoral Positions in Computer Science TUM

Technische Universität München

München

54.500 €71.000 €

Doctoral and Postdoctoral Positions in Computer Science TUM

München

Technische Universität München

54.500 €71.000 €

Ph.D Position on Machine Learning in Biomechanics (m/w/d)

Technische Universität München

München

50.500 €63.500 €

Ph.D Position on Machine Learning in Biomechanics (m/w/d)

München

Technische Universität München

50.500 €63.500 €

PhD Thesis: Self-Evolution for Autonomous Industrial Software

Siemens AG

Garching bei München

PhD Thesis: Self-Evolution for Autonomous Industrial Software

Garching bei München

Siemens AG

Master s Thesis - Enhance Performance of Neural-Network-Based Action Masking

Technische Universität München

München

Master s Thesis - Enhance Performance of Neural-Network-Based Action Masking

München

Technische Universität München