Navigation überspringen

Dr. Amit Singh

Data Science | Machine Learning | Mathematical Modeling | Bioinformatics

Angestellt, Bioinformatics Data Scientist Support, ETH, Switzerland
Zürich, Schweiz

Fähigkeiten und Kenntnisse

Big Data
Data Science
Machine Learning
Python
Data Analysis
Statistics
Genomics
R programming language
Mathematical Modeling
Bioinformatics
Project Management
Research and Development
MatLab
Sequencing
Systems Biology
Quantitative analysis
ML
ETL
Gene expression
Statistical Analysis
Data Preparation
Cloud Computing
Mathematics
Physics
Analytics
SQL
Biology
Application
Biochemistry
Molecular Biology
Data processing
Database
dynamic
Problem Solving
Analytical skills
Presentation skills
International experience
Linux

Werdegang

Berufserfahrung von Amit Singh

  • Bis heute 2 Jahre und 6 Monate, seit Jan. 2023

    Bioinformatics Data Scientist Support

    ETH, Switzerland

    Project: Mechanoresponsive bone organoids a platform for studying bone diseases and therapeutics - Implemented RNA sequencing analysis pipeline and downstream analysis of osteogenesis imperfecta disease and healthy bone organoids - Mathematical models for optimizing experimental design and scale-up of bone organoids - Developing Machine learning elastic net model for drug prediction of human osteogenesis imperfecta disease - Provided consultation to experimentalists on data analysis

  • Bis heute 3 Jahre und 6 Monate, seit Jan. 2022

    Scientific Collaborator

    ETH Zürich

    Project: In vivo single-cell mechanomics of bone adaptation and regeneration in the aging mouse -Implemented data preprocessing and analyzing pipeline for spatial transcriptomics data of mouse bone from in vivo studies - Development of Mechanoregulation analysis during bone fracture healing under mechanical loading -Supervised and mentored Bachelor’s and Master’s students on their research projects -Supported PhD and Postdoc with genomic data analysis and interpretation for their research projects

  • 6 Jahre und 6 Monate, Jan. 2018 - Juni 2024

    Honorary Departmental Bioinformatics and Visiting Scientist

    University of Oxford

    Projects involved: Single-cell RNA sequencing analysis of bone marrow endothelial cells -Developed ETL data pipeline for single-cell RNA sequence and bulk sequencing in a mouse model -Implemented unsupervised learning methods such as non-linear dimensionality reduction techniques to explore and visualize genomic data -Implemented a graph-based clustering approach (unsupervised learning) to identify differentially expressed features -Implemented data analysis pipelines to analyze proteomic data

  • 5 Jahre und 5 Monate, Aug. 2016 - Dez. 2021

    Bioinformatics Scientist/Data Scientist

    Ruprecht Karl University of Heidelberg

    Project: Dynamic modelling of circadian clock of Neurospora Crassa - Developed Data preprocessing pipeline to analyze time series genomic data in a high-performance computing environment - Developed a machine learning model to predict the circadian gene expression in N.Crassa genome - Developed a predictive mathematical model of the circadian clock of N.Crassa using ordinary differential equations based on experimental time-course data - Consulting experimental groups on data analysis topics

  • 1 Jahr und 3 Monate, März 2015 - Mai 2016

    Bioinformatics Data Scientists

    Max Planck Institute for Molecular Biomedicine

    Project involved: Global gene expression profile of mouse endothelial cell subtypes of long bone - Performed statistical analysis of big genomic data and developed data processing pipeline for the analysis of mouse endothelial cell subtypes from embryonic and early postnatal long bone - Built supervised machine learning models to predict differentially regulated genes -Designed a computing strategy for a high-performance computing environment to process genomic data

  • 2 Jahre, Jan. 2013 - Dez. 2014

    Bioinformatics Data Scientist/Systems Biology,

    Albert-Ludwigs-Universität Freiburg

    Project involved: Unraveling the signaling mechanisms of PC12 Cell differentiation -Developed supervised machine learning models to predict differentially expressed genes between different conditions to study PC12 cell differentiation -Performed functional enrichment and clustering analysis to detect functionally related genes -Developed a logic based machine learning model to predict discrete dynamics of large-scale gene-protein networks to study PC12 cell differentiation

  • 2 Jahre und 8 Monate, Mai 2010 - Dez. 2012

    Bioinformatics Scientist/Systems Biology

    Ruprecht karl university of heidelberg

    Project involved: Medical Systems Biology of Chronic Wounds - Built supervised machine learning models to predict differentially expressed genes between different conditions to study HGF-induced keratinocyte cell migration -Developed a logic based machine learning model to predict discrete dynamics of large-scale gene-protein networks to study HGF-induced keratinocyte cell migration

  • 1 Jahr, Mai 2009 - Apr. 2010

    Bioinformatics Scientist/Systems Biology

    University of Rostock

    Projects involved: CALSYS-Systems Biology of Cancer and Ageing -Developed a predictive mathematical model of cell cycle protein P53 -Data mining and analysis of biological data from public databases and scientific publications

  • 1 Jahr und 7 Monate, Okt. 2007 - Apr. 2009

    Project Assistant

    Indian Institute of Technology, Madras

    Project involved: Investigation of structure and function of GNL3L protein - Performed cell culture, gene cloning, and western blot of GNL3L protein

Ausbildung von Amit Singh

  • 5 Jahre, Mai 2010 - Apr. 2015

    Bioinformatics and Systems Biology

    Albert Ludwigs University of Freiburg, Freiburg, India

  • 2 Jahre, Juli 2005 - Juni 2007

    Biochemistry

    University of Hyderabad, Hyderabad, India

  • 3 Jahre, Juli 2001 - Juni 2004

    Physics

    Orissa University of Agriculture and Technology, Odisha, India

Sprachen

  • Englisch

    Fließend

  • Deutsch

    Grundlagen

  • Oriya

    -

  • Hindi

    -

XING – Das Jobs-Netzwerk

  • Über eine Million Jobs

    Entdecke mit XING genau den Job, der wirklich zu Dir passt.

  • Persönliche Job-Angebote

    Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.

  • 22 Mio. Mitglieder

    Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.

  • Kostenlos profitieren

    Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.

21 Mio. XING Mitglieder, von A bis Z