Shahriar Kabir

Bis 2024, Software Developer, TOP seven GmbH & Co. KG
Abschluss: M.Sc., TU München
Munich, Deutschland

Fähigkeiten und Kenntnisse

Python
Java
C++
Kotlin
Amazon Web Services (AWS)
Cloud Computing
Machine Learning
Deep Learning
MySQL
PostgreSQL
SQLite
SQL
Linux
Docker
Git
GitLab
Jenkins
CI/CD
Atlassian Jira
Confluence
PyTorch
TensorFlow
Keras
scikit-learn
Django Framework
Tailwind CSS
Spring Boot
Product Development
Cybersecurity
Software Development
Business Development
Project Management
Communication skills

Werdegang

Berufserfahrung von Shahriar Kabir

  • 1 Jahr und 6 Monate, Jan. 2023 - Juni 2024

    Software Developer

    TOP seven GmbH & Co. KG

    • Modular Pilot Application: Enabled compatibility with diverse drones (DJI M300 & MAVLink). • Real-time Video Streaming: Sub-200ms latency for smooth video feeds (FFmpeg & GPU acceleration). • Localized Geofence Database: Optimized on-device geofence retrieval (SQLite). • Scalable Geofence Storage (AWS S3): Efficient database management. • Dockerized Gazebo Simulator: Streamlined drone mission simulation. • Custom Python Image Viewer: Facilitated wind turbine blade damage inspections.

  • 6 Monate, Juli 2022 - Dez. 2022

    Research Assistant

    Technical University of Munich

    • Implemented self-supervised contrastive learning in PyTorch to pre-train a model on the Global Mining Sites dataset, reducing reliance on expensive annotated data. • The pre-trained model improved mining site segmentation with minimal labeled data. • Collaborated with researchers across TUM AI and DLR to advance this state-of-the-art approach and develop effective solutions.

  • 7 Monate, Okt. 2021 - Apr. 2022

    Research Intern

    Energy Research Institute @ NTU

Ausbildung von Shahriar Kabir

  • 2 Jahre und 11 Monate, Aug. 2019 - Juni 2022

    Aerospace Engineering

    TU München

    Master Thesis Student Jan 2022 - Jun 2022 • Created a Sentinel-2 image-based dataset of 150 annotated Chilean mining sites, with regions classified into eight categories (e.g., mine sites, open-pits, leaching heaps). • Implemented a U-Net model with a ResNet-34 backbone in TensorFlow/Keras for semantic segmentation. • The model achieved 89% accuracy and a mean Intersection over Union (mIoU) of 70.5%, demonstrating its effectiveness in classifying various mining site features.

  • 4 Jahre und 10 Monate, Juni 2014 - März 2019

    Aerospace Engineering

    International Islamic University Malaysia

XING – Das Jobs-Netzwerk

  • Über eine Million Jobs

    Entdecke mit XING genau den Job, der wirklich zu Dir passt.

  • Persönliche Job-Angebote

    Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.

  • 22 Mio. Mitglieder

    Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.

  • Kostenlos profitieren

    Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.

21 Mio. XING Mitglieder, von A bis Z