Navigation überspringen

Siddhi Gunaji

Dingolfing, Deutschland

Fähigkeiten und Kenntnisse

Linux
Information Engineering
Lernen
Datenbank
C/C++
Bildverarbeitung
Jupyter
Natural Language Processing
Maschinelles Sehen
NoSQL
Apache Spark
Apache Kafka
Support
Vektorgrafik
Big Data
PyTorch
Python pandas
Stored Procedure
TensorFlow
Cloud Computing
Informationstechnologie
Echtzeit
Forschung
R Programmiersprache
Cluster
Deep Learning
Zeit
Flask (Webframework)
AWS
Spielfilm
Analyse
SQL Server
Baum
ETL
Datenmanagement
Softwareentwicklung
Teradata
Industrie 4.0
Microsoft Excel
XGBoost
Anti Fraud Management
Datenvisualisierung
Matplotlib
Künstliche Intelligenz
NumPy
Datenanalyse
Serie
Programmiersprache
Arbeitsmaschinen
Data Science
Anaconda
neural network
Dask
exploratory data analysis
Data Structure
LSTM
LLM
Neo4j
RavenDB
anomaly detection
predicting
Bayesian
predictive
Maschinelles Lernen
Instandhaltung
HTML
Algorithmus
PROPHET
Keras
Visual Studio
scikit-learn
Git
Java
SQL
Microsoft Power BI
Wald
Apache Airflow
Engineering
Python
Research and Development
Machine Learning
Deep learning
Artificial Intelligence
Data modeling
Data preprocessing
Exploratory data analysis
Lstm
Xgboost
Big Data Analytics
Feature engineering
IT-Affinität

Werdegang

Berufserfahrung von Siddhi Gunaji

  • 5 Monate, Jan. 2025 - Mai 2025

    Junior Data Analyst - Forecasting & Automation

    Paretos GmbH

    • Built scalable forecasting pipelines using Nixtla models and Python, automated anomaly detection, and data reporting using GitLab CI/CD and BigQuery to support business-critical decision-making. • Conducted exploratory data analysis using Python and SQL to identify forecastability issues, detect anomalies, and speed up reporting workflows, significantly reducing manual validation and improving client communication on data quality.

  • 7 Monate, Okt. 2023 - Apr. 2024

    Master Thesis - Wear Analysis with Machine Learning

    BMW Group

    • Addressed unplanned downtime in industrial setups by developing a predictive maintenance model using LSTM networks on pneumatic cylinder data extracted from PLC signals, resulting in a 20% improvement in failure prediction accuracy. • Performed in-depth time series data analysis and model optimization, enabling proactive scheduling and reducing maintenance costs through early anomaly detection.

  • 7 Monate, Apr. 2023 - Okt. 2023

    Research Intern in the field of Industry 4.0

    BMW Group

    • Extracted meaningful insights from over 4.6 million records of PLC signal data using advanced big data methods like NumPy arrays, Dask, and Polars, enhancing data understanding and predictive maintenance capabilities. • Performed exploratory data analysis (EDA) and applied multiple machine learning models on cutting machine tool data in the engine stator production station, achieving approximately 72% accuracy in predicting blade replacement timings and improving production efficiency.

  • 3 Jahre und 3 Monate, Dez. 2018 - Feb. 2022

    Data Engineer

    Larsen & Toubro Infotech

    • Engineered and optimized tax fraud detection systems using Apache Kafka, Spark, and Airflow for real-time data ingestion and ETL, and deployed anomaly detection models with TensorFlow and AWS SageMaker, enhancing fraud detection and system efficiency. • Developed and maintained SQL queries and stored procedures using Teradata at the Central Board of Direct Taxes, leveraging Big Data expertise for effective data management and analysis.

XING – Das Jobs-Netzwerk

  • Über eine Million Jobs

    Entdecke mit XING genau den Job, der wirklich zu Dir passt.

  • Persönliche Job-Angebote

    Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.

  • 22 Mio. Mitglieder

    Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.

  • Kostenlos profitieren

    Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.

21 Mio. XING Mitglieder, von A bis Z