
Siddhi Gunaji
Fähigkeiten und Kenntnisse
Werdegang
Berufserfahrung von Siddhi Gunaji
• Built Python-based data pipelines on AWS to ingest, transform & validate fragmented vehicle safety datasets, resulting in reliable, analytics & ML-ready data products. • Developed automated dashboards in AWS QuickSight, consolidating outputs from multiple AI workflows into actionable insights for engineering decision-making . • Contributed to computer vision–based vehicle safety use cases, like driver attention monitoring, supporting data preparation & evaluation for in-cabin perception systems.
- 5 Monate, Jan. 2025 - Mai 2025
Junior Data Analyst - Forecasting & Automation
Paretos GmbH
• Designed & operated production-grade time-series forecasting pipelines using the Nixtla ecosystem to support scalable demand & KPI forecasting. • Implemented feature engineering, automated validation, & performance monitoring workflows, improving forecast consistency, reliability, & reproducibility across products and regions. • Collaborated with product & business stakeholders to translate planning requirements into reusable forecasting & analytics workflows, enabling data-driven decision-making.
• Analyzed large-scale time-series sensor & PLC data to detect early failure patterns, applying statistical forecasting models, LSTM, XGBoost to support predictive maintenance & operational monitoring. • Built end-to-end data preprocessing & feature engineering pipelines, & performed model training, validation, & performance comparison to deliver robust & interpretable analytical results. • Documented assumptions, thresholds, & evaluation results, ensuring traceability, and repeatability.
• Extracted meaningful insights from over 4.6 million records of PLC signal data using advanced big data methods like NumPy arrays, Dask, and Polars, enhancing data understanding and predictive maintenance capabilities. • Performed exploratory data analysis (EDA) and applied multiple machine learning models on cutting machine tool data in the engine stator production station, achieving approximately 72% accuracy in predicting blade replacement timings and improving production efficiency.
- 3 Jahre und 3 Monate, Dez. 2018 - Feb. 2022
Data Engineer
LTIMindtree
• Engineered and optimized tax fraud detection systems using Apache Kafka, Spark, and Airflow for real-time data ingestion and ETL, and deployed anomaly detection models with TensorFlow and AWS SageMaker, enhancing fraud detection and system efficiency. • Developed and maintained SQL queries and stored procedures using Teradata at the Central Board of Direct Taxes, leveraging Big Data expertise for effective data management and analysis.
XING Mitglieder mit ähnlichen Profilangaben
XING – Das Jobs-Netzwerk
Über eine Million Jobs
Entdecke mit XING genau den Job, der wirklich zu Dir passt.
Persönliche Job-Angebote
Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.
21 Mio. Mitglieder
Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.
Kostenlos profitieren
Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.
