
Vaishnav Negi
Fähigkeiten und Kenntnisse
Werdegang
Berufserfahrung von Vaishnav Negi
Developed end-to-end AWS anomaly detection pipeline achieving 77% F1 score using Isolation Forest with frequency encoding. Collaborated with stakeholders to define 13 hard-coded business rules for anomaly detection, reducing rule-based anomalies from 49% to 5% of the dataset through iterative validation sessions. Designed AutoEncoder-based feature engineering pipeline with custom embedding layers, batch normalization, and dropout regularization.
Developed YOLO-based computer vision models for automated industrial inspection: digital gauge reading (95% accuracy), analog gauge reading (85% accuracy, ±5% error margin), valve state detection (90% accuracy), and liquid level measurement (95% accuracy). Built TUV safety stamp recognition system for fire extinguisher inspection tracking, achieving 75% accuracy using custom CV pipelines combining YOLO detection/segmentation with traditional image processing techniques.
Maintained health and inventory of 50+ high-performance compute clusters (Linux, Windows) for deep learning research, utilizing bash scripting, Python, and Ansible for system administration and resolving errors through log analysis. Adapted open-source VTiger CRM software for inter-department use, managing version control and deployments via GitLab.
Building custom LLM-based evaluation framework for benchmarking BMW's In-car Personal Assistant (IPA) using proprietary models (GPT-3.5, GPT-4o, GPT-5) and open-source models (DeepSeek) to assess multi-turn conversation quality. Developed automated pipeline for generating extensive conversation datasets with configurable participant roles (simulated users, evaluators), persona settings, and task descriptions for systematic model benchmarking.
Ausbildung von Vaishnav Negi
- Bis heute 3 Jahre und 4 Monate, seit Okt. 2022
Data Science
Friedrich-Alexander-Universität Erlangen-Nürnberg
- 4 Jahre und 3 Monate, Juni 2017 - Aug. 2021
Computer Science and Engineering
Graphic Era University
Sprachen
Englisch
Fließend
Deutsch
Grundlagen
XING Mitglieder mit ähnlichen Profilangaben
XING – Das Jobs-Netzwerk
Über eine Million Jobs
Entdecke mit XING genau den Job, der wirklich zu Dir passt.
Persönliche Job-Angebote
Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.
21 Mio. Mitglieder
Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.
Kostenlos profitieren
Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.
