Kanishk Navale

Angestellt, AI Software Engineer, Greenbone AG
Stuttgart, Deutschland

Fähigkeiten und Kenntnisse

Wissenschaftliche Mitarbeit
Lernen
Mathematik
Architektur
Information Retrieval
Geduld
Entscheidungsfähigkeit
Teamfähigkeit
Maschinelles Sehen
Python
SolidWorks
3D-CAD
OpenCL
Robotik
Praktikum
Kommunikationsfähigkeit
Flexibilität
Automatisierung
CI/CD
GitHub
Künstliche Intelligenz
Planung
Informatik
deformation
transformers
Hindsight
probabilistic
Team Management
MongoDB
Maschinelles Lernen
Konfektionierung
Physik
Forschung und Entwicklung
Party-Veranstaltung
Selbstständigkeit
Operating System
Git
Kalibrierung
Elektrotechnik
Serialisierung
Semantik
Stapelspeicher
Optimierung
Datenbank
LiNear
C/C++
Docker
Systemengineering
Komplettsysteme
Large Language Models
Wissenschaftliche Publikation
Kommunikation
Design
Generative KI
Geometrie
Informationstechnologie
Beckhoff TwinCAT
Fanuc
Zeit
AWS
Softwareentwicklung
GIS
neural network
Data Retrieval
Dimensional Data
GRPC
LLMs
LLM
Systems Engineer
ZeroMQ
Imitation
Algorithmus
Masterarbeit
C#
Maschinen
Software Architektur
Engineering
Informationssysteme
Robotics
Machine Learning
Deep Learning
Reinforcement Learning
Computer Vision
Artificial intelligence
TensorFlow
PyTorch
GIT
Rust (programming language)
PostgreSQL
DuckDB
SQLite
Pydantic
LlamaIndex
vLLM
LlamaCPP
Sglang
Model Context Protocol
AI Agents

Werdegang

Berufserfahrung von Kanishk Navale

  • Bis heute 1 Jahr und 8 Monate, seit Mai 2024

    AI Software Engineer

    Greenbone AG

    Built the company's AI framework to power their entry into AI-driven vulnerability management. Designed production ML pipelines for rapid LLM fine-tuning and deployment, delivering NLP models with 96% accuracy in vulnerability detection script generation. Spearheaded the design and implementation of a multi-agent AI orchestration platform. The system delivers context-aware mitigation recommendations, downtime impact classification, and intelligent remediation prioritisation used by all product customers.

  • 1 Jahr und 3 Monate, Nov. 2022 - Jan. 2024

    Senior Deep Learning Engineer

    sereact GmbH

    Led abstraction & development of the company's specialized large language model product designed for robot interaction. Fine-tuned foundation models using LoRA methodology blended with geodesic multi-head self-attention for robot & visual object interaction. Engineered vision transformer extracting feature pyramid using PyTorch-Lightning framework for depth image completion with robust object mask estimation to infer valid depth images of an object and bring in geometrical aware boundary depth completion.

  • 7 Monate, Mai 2022 - Nov. 2022

    Master Thesis Student

    sereact GmbH

    Graduated with distinction (grade 1.3/1.0) and published an IEEE paper. Developed a self-supervised visual representation model that strengthened robotic grasp success from 70% to 90% by designing an end-to-end network with geometric constraints, eliminating the need for manual data labelling. Accelerated model training by 200% and removed dependency on unreliable depth cameras by designing an RGB-only 3D keypoint regression architecture, enabling more robust pose estimation for production deployment.

  • 6 Monate, Nov. 2021 - Apr. 2022

    Intern - Reinforcement Learning & Planning

    Bosch Center for Artificial Intelligence

    Contributed pixel-wise distributional loss to optimize the deep learning network. The implemented loss function led the DNN to yield better uni-modal predictions visually by inspecting the heatmap of tracked keypoint over the existing loss function. Formulated an optimization process to regress geometrically consistent visual keypoints on the dense feature space by engineering self-supervised losses, eliminating manual keypoint selection to create oriented bounding boxes.

  • 5 Monate, Mai 2021 - Sep. 2021

    Wissenschaftliche Hilfskraft

    Max Planck Institute for Intelligent Systems

    Developed a haptics-based robot physics engine as a research assistant. Collaborated with the internal electronics engineering team of size 4 to modularize capacitive-based haptic sensors enabling direct integration with the robot core operating system. Installed 'Hybrid Controller' in the robot, improving sensing by 55% by incorporating probabilistic state estimation for the haptic sensor.

  • 1 Jahr und 2 Monate, Aug. 2018 - Sep. 2019

    Research Assistant

    KLE Technological University

    Critiqued 3 student industrial automation & robotics research teams simultaneously. Cofounded an internal group acting as a consulting firm for local industries & research teams to fabricate economical automation & robot controllers.

  • 2 Jahre und 2 Monate, Juni 2016 - Juli 2018

    Robot Systems Engineer

    FANUC India Pvt. Ltd.

    Commissioned 48 industrial robots in welding, 2D & 3D vision, machine tending, IoT with predictive maintenance as part of the design & site team. The technical & commercial proposals generated revenues more than the set yearly revenue targets.

Ausbildung von Kanishk Navale

  • Bis heute 6 Jahre und 3 Monate, seit Okt. 2019

    Computer Science

    University of Stuttgart

    Improved robot path planning by 60% fewer episode lengths using DDPG agent with prioritized & hindsight experience replay with parametric exploration noise using Tensorflow 2 & PyTorch. Implemented transformers-based speech & language learning model for classification with model optimizations, earning top-2 position in the class. Designed information maximization variation encoder (Info-VAE) for high data dimensional decomposition to its latent state, securing top-1 the class.

  • 4 Jahre und 1 Monat, Juni 2012 - Juni 2016

    Automation & Robotics

    B.V.B. College of Engineering and Technology

    Led student team of size 10 to participate in ABU-Robocon international event engineering two badminton-playing robots. Built a delta-style parallel robot for the bachelor's capstone project. Designed mechanical robot system components using the SolidWorks CAD tool & inspected the manufactured parts based on the GD&T standards. Furthermore, based on control design, custom PCBs were fabricated using the EAGLE tool, and a PLC-based motion system was deployed using Beckhoff TwinCAT.

Sprachen

  • Englisch

    Muttersprache

  • Deutsch

    Gut

XING – Das Jobs-Netzwerk

  • Über eine Million Jobs

    Entdecke mit XING genau den Job, der wirklich zu Dir passt.

  • Persönliche Job-Angebote

    Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.

  • 21 Mio. Mitglieder

    Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.

  • Kostenlos profitieren

    Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.

21 Mio. XING Mitglieder, von A bis Z