Yeersen Shatewakasi

ist offen für Projekte. 🔎

Bis 2025, New Class High Voltage Battery Planning & Industrialization, BMW Group

Fähigkeiten und Kenntnisse

Projektmanagement
MS Office
Mechatronics
Robotics
Machine Learning
Natural Language Processing (NLP)
computer vision
Deep Learning
reinforcement learning
Beratung
Management
SAP
Engineering
Informatik
Deutsch
Automatisierungstechnik
Automatisierung
Fahrzeugtechnik
Englische Sprache
Fehlersuche
SPS
Kfz-Mechatronik
Python
C++
MatLab
Computer Vision
scikit-learn
Pandas
XGBoost
LightGBM
TensorFlow
PyTorch
Keras
ONNX Runtime
RAG
SLAM
Open3D
OpenCV
YOLOv5
Detectron2
LLMs
OpenAI API
NER
Transformers
Hugging Face
spaCy
Gensim
SQL
MS Access
Microsoft Excel
Power BI
Tableau
Jira
COMAN
Microsoft Project
Confluence
SAP ERP
Asana
Azure ML
Docker
Kubernetes
CI/CD pipelines
GitHub Actions
Cloud
DevOps
ROS
Ansys Workbench
BERT
LDA
Active Learning
Domain Expertise
API calls
MIDAS
Process Optimization
Teamfähigkeit
Kommunikationsfähigkeit
Kundenorientierung
Zuverlässigkeit
Interkulturelles Management
Scrum
Datenverarbeitung
Anforderungsanalyse
Künstliche Intelligenz
Agile Entwicklung
Neurolinguistisches Programmieren
Prototyping
CMS
Produktentwicklung
Datenanalyse
Dashboards
Produktmanagement
Prozessanalyse
Start-up
TikTok
Artistik

Werdegang

Berufserfahrung von Yeersen Shatewakasi

  • 7 Monate, Feb. 2025 - Aug. 2025

    New Class High Voltage Battery Planning & Industrialization

    BMW Group

    1. Developed Power BI dashboards tracking KPIs of 27 global suppliers, enhancing data-driven decisions in performance management. 2. Reduced shipment delays by 28% via daily client coordination and an Excel-based tracking system for early issue detection. 3. Managed weekly reporting for 6 departments with Coman, Next One, and Excel, achieving 93% milestone adherence. 4. Developed an AI tool centralizing project data from Confluence, enabling management to query and retrieve documents.

  • 7 Monate, Juni 2024 - Dez. 2024

    Master Thesis (Data Processing & Management for Gas Atomization Experiments)

    Linde

    1. Optimized experimental data acquisition through dynamic sampling frequency adjustment and application of an anti-aliasing filter, eliminating 98% of high frequency noise and aliasing. 2. Applied MIDAS regression combined with ML in Matlab to enhance alignment accuracy of high- and low-frequency sensor data to 87%. 3. Designed a robust industrial data management system using SQL, reducing query and experiment report generation time for 500,000+ records to under 6 seconds, while ensuring data integrity.

  • 7 Monate, Mai 2023 - Nov. 2023

    Semester Thesis (NLP-driven Online Classification of Industrial Alarm Messages)

    Lehrstuhl für Automatisierung und Informationssysteme an der TUM

    1. Designed an NLP pipeline in Python to classify 600,000+ industrial alarms, cutting manual workload by 98% through pre-labeling and classification. 2. Applied Active Learning with domain expertise to detect common fault types, then used LDA topic modeling to categorize additional sparse data. 3. Trained and fine-tuned a BERT model with pre-labeled dataset, achieving 95% accuracy and 0.06% Hamming Loss on imbalanced multi-label tasks, boosting scalability for unseen categories.

  • 2 Monate, März 2019 - Apr. 2019

    Mechatronics Technician

    Dow Chemical

    1. Diagnosed and repaired computer-controlled mechanical systems. 2. Analyzed DCS/PLC downtime data to identify root causes of abnormal pump vibration, designed shims in SolidWorks to correct shaft misalignment, reducing vibration alarm frequency by 18%.

  • 3 Monate, Mai 2018 - Juli 2018

    Data Analyst

    Smartcorr

    1. Measured 3 bottlenecks in production line using Minitab. 2. Provided supply chain solutions using SAP ERP data analysis in Excel and lead time visualization in PowerPoint, reducing delays and contributing to a ~20% increase in production volume.

  • 3 Monate, Mai 2017 - Juli 2017

    Corrosion Control Technician

    COSASCO

    1. Analyzed key on-site data in Excel and implemented targeted corrosion prevention measures, extending equipment lifespan. 2. Conducted ultrasonic NDT to detect potential internal metal corrosion without halting production, reducing downtime by 15%.

Ausbildung von Yeersen Shatewakasi

  • Bis heute 5 Jahre und 1 Monat, seit Okt. 2020

    Mechatronics, Robotics and Biomechanical Engineering

    Technische Universität München

    Master of Science

  • 3 Jahre und 11 Monate, Sep. 2015 - Juli 2019

    Mechanical Design Manufacturing and Automation

    Harbin Institute of Technology

    Bachelor of Science

Sprachen

  • Deutsch

    Fließend

  • Englisch

    Fließend

  • Chinesisch

    Muttersprache

  • Kasachisch

    Muttersprache

XING – Das Jobs-Netzwerk

  • Über eine Million Jobs

    Entdecke mit XING genau den Job, der wirklich zu Dir passt.

  • Persönliche Job-Angebote

    Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.

  • 21 Mio. Mitglieder

    Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.

  • Kostenlos profitieren

    Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.

21 Mio. XING Mitglieder, von A bis Z