Navigation überspringen

Yevhen Havrylenko

Angestellt, Postdoctoral Researcher, Universität Ulm
Ulm, Deutschland

Fähigkeiten und Kenntnisse

Research
Actuarial science
Mathematical finance
Portfolio Analysis
Mathematical optimization
R
Python
MatLab
C++
C#
PL/SQL
Consulting
Research and Development
Investment
Machine Learning
Mathematics
Life insurance
Asset Allocation
Project Management
Academic writing
Innovation
Data Analysis
Asset Management
Problem Solving
Team work
Intercultural competence
International experience

Werdegang

Berufserfahrung von Yevhen Havrylenko

  • Bis heute 8 Monate, seit Okt. 2024

    Postdoctoral Researcher

    Universität Ulm

    I am a DAAD PRIME Fellow (https://www.daad.de/en/studying-in-germany/scholarships/daad-funding-programmes/prime/) and conduct research in asset-liability management, decision-making theory, and data science with applications to insurance and finance.

  • 2 Jahre, Jan. 2023 - Dez. 2024

    Postdoctoral Researcher

    University of Copenhagen

    I conducted research on the optimal investment-consumption strategies and on interpretable machine learning with applications to insurance.

  • 4 Jahre und 7 Monate, Juni 2018 - Dez. 2022

    Research Scientist

    TU München

    I conducted 5 research project that resulted scientific publications publications and did 3 applied projects for ERGO & Munich Re (see section below). In addition, I supervised 3 Master theses, 3 seminar works and the TUM-ERGO Machine Learning team of 5 students. Finally, I co-organized 3 academic events, including the International Congress on Insurance: Mathematics and Economics 2019 in Munich.

  • 4 Monate, Apr. 2022 - Juli 2022

    Project Employee

    ERGO Group AG

    Department “Global Property & Casualty Actuarial Pricing” Created a tool that recommends the next-best pairs of interacting variables for generalised model models (GLMs) Methodology is based on my research paper “Detection of interacting variables for GLMs via neural networks” co-authored with J. Heger Implementation: R (frontend) and Python (backend, mainly keras and tensorflow packages) Prepared technical as well as methodological documentation of the developed tool

  • 6 Monate, Okt. 2020 - März 2021

    Project Employee

    Munich Re (Group)

    Departmet "Strategic Asset Allocation". Created a tool for robust computation & analysis of relevant investment portfolios risks such as Market Value-at-Risk (VaR), Credit VaR, Foreign-Exchange VaR, Asset-Liability Mismatch Risk (ALMR). Tool functionality: total risk factor VaR & ALMR, disaggregated risks (e.g., for asset classes), marginal risks, robustification using L-estimators. Implementation: MATLAB (computation & plotting) and Excel (user interface).

  • 3 Monate, Sep. 2019 - Nov. 2019

    Project Employee

    ERGO Group AG

    Department "Strategic Asset Allocation". Analyzed algorithms suitable for clustering financial assets. Conducted clustering analysis of the asset universe of ERGO Group. Created a user-friendly Python-Excel clustering tool for asset allocation decision support.

  • 4 Monate, März 2018 - Juni 2018

    Research and Teaching Assistant

    Technical University of Munich

    Course in Financial Market Volatility. Key topics: - symmetric and asymmetric GARCH, CCC- and DCC-GARCH, orthogonal GARCH models - stochastic and local volatility models - volatility trading

  • 8 Monate, Apr. 2017 - Nov. 2017

    Research assistant

    Technical University of Munich

    Course in Statistics for Business Administration

  • 2 Monate, März 2017 - Apr. 2017

    Consultant

    d-fine GmbH

    Project centred around IRBA audit preparation of a German bank. Analyzed deviations between internal models and their prototypes to control credit risk. Corrected found errors using PL/SQL. Developed further the credit decision process prototype in PL/SQL.

  • 3 Monate, Aug. 2016 - Okt. 2016

    Credit Risk Modeler

    BayernLB

    Team "Credit Portfolio Risk Measurement & Methodology". Analyzed performance of algorithms for stochastic LGDs generation in C++. Developed and implemented in C++ an efficient algorithm for stochastic LGDs generation. Calibrated a structural credit portfolio model using R.

Ausbildung von Yevhen Havrylenko

  • 4 Jahre und 9 Monate, Juni 2018 - Feb. 2023

    Mathematical Finance and Actuarial Science

    Technical University of Munich

    In my dissertation, I study the optimal investment and risk-sharing strategies for decision makers with constraints, e.g., insurance companies. I solve the corresponding portfolio-optimization problems by advancing existing methodologies to tackle the presence of risk-sharing mechanisms as well as constraints on terminal wealth or investment strategies. Link to dissertation: https://mediatum.ub.tum.de/?id=1692226

  • 2 Jahre und 8 Monate, Okt. 2015 - Mai 2018

    Mathematical Finance and Actuarial Science

    Technical University of Munich

    Mathematical finance: stochastic analysis, continuous time finance, fixed income markets, portfolio analysis. Statistics: time series analysis, computational statistics, generalized linear models. Optimization: nonlinear optimization advanced, optimization methods in machine learning

  • 3 Jahre und 10 Monate, Sep. 2011 - Juni 2015

    System analysis

    Taras Shevchenko National University of Kyiv

    Foundations: algebra, mathematical analysis, discrete mathematics, probability theory, statistics. Applied mathematics: data analysis, operations research, numerical methods, decision making theory, econometrics. Computer science: programming (C++, C#), algorithms

Sprachen

  • Englisch

    Fließend

  • Deutsch

    Fließend

  • Polnisch

    Grundlagen

  • Russisch

    Fließend

  • Ukrainian

    Muttersprache

XING – Das Jobs-Netzwerk

  • Über eine Million Jobs

    Entdecke mit XING genau den Job, der wirklich zu Dir passt.

  • Persönliche Job-Angebote

    Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.

  • 22 Mio. Mitglieder

    Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.

  • Kostenlos profitieren

    Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.

21 Mio. XING Mitglieder, von A bis Z