Master Thesis: Machine Unlearning for Digital Pathology

Master Thesis: Machine Unlearning for Digital Pathology

Master Thesis: Machine Unlearning for Digital Pathology

Master Thesis: Machine Unlearning for Digital Pathology

Technische Universität München

Fach- und Hochschulen

München

  • Art der Anstellung: Vollzeit
  • Vor Ort

Master Thesis: Machine Unlearning for Digital Pathology

Über diesen Job

Sitemap >Schwarzes Brett >Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten > Master Thesis: Machine Unlearning for Digital Pathology
Zurück zu Nachrichten-Bereich Browse in News

Master Thesis: Machine Unlearning for Digital Pathology

11.07.2025, Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten

Machine unlearning is the process of eliminating the effect of a given set of samples, known as the forget set, from a pretrained model. The aim of machine unlearning is to fulfill the "right to be forgotten”, specified in Article 17 of General Data Protection Regulation (GDPR), which grants the individuals such as patients the right to ask data holders including hospitals and medical centers to have their data "forgotten”. "Data forgetfulness” in this regard implies that the data holders are obligated to not only remove the data of the given individuals from their storage systems but also unlearn the contribution of that data from any trained model. The most naive approach to machine unlearning is "exact unlearning”, where the model is retrained from scratch (with randomly initialized weights) on the dataset excluding the forget set. However, this approach is computationally expensive, especially for large (foundation) models and/or frequent unlearning requests. "Approximate unlearning” addresses this challenge by performing the unlearning process in a more computationally efficient fashion.

Previous studies mainly focus on proposing new approximate unlearning algorithms, evaluating the algorithms on non-medical datasets. To the best of our knowledge, the application of machine unlearning on medical data, especially on histopathology images is still underexplored. This project aims to investigate the performance of the existing unlearning algorithms on pathology images, focusing on the patch-level and slide-level classification tasks. Unlike the datasets used in many previous studies, where the samples are considered to be uncorrelated (i.e. belonging to separate individuals/entities), the samples, e.g. patches, in pathology images might belong to the same patient. This characteristic of pathology data makes the unlearning process more challenging. This is because even if a few patients ask for data forgetfulness, the contribution of many patches corresponding to their whole slide images must be unlearned from the model, which might lead to "catastrophic unlearning”, in which the unlearned model might not be generalizable anymore.

Please find the attached PDF for a more detailed description of the project!

Kontakt: reza.nasirigerdeh@tum.de

Unternehmens-Details

company logo

Technische Universität München

Fach- und Hochschulen

5.001-10.000 Mitarbeitende

München, Deutschland

Bewertung von Mitarbeitenden

Vorteile für Mitarbeitende

Flexible Arbeitszeiten
Home-Office
Kantine
Restaurant-Tickets
Kinderbetreuung
Betriebliche Altersvorsorge
Barrierefreiheit
Gesundheitsmaßnahmen
Betriebsarzt
Training
Parkplatz
Günstige Anbindung
Vorteile für Mitarbeitende
Smartphone
Gewinnbeteiligung
Veranstaltungen
Privat das Internet nutzen
Hunde willkommen

Unternehmenskultur

Unternehmenskultur

312 Mitarbeitende haben abgestimmt: Sie bewerten die Unternehmenskultur bei Technische Universität München als ausgeglichen zwischen traditionell und modern.Der Branchen-Durchschnitt geht übrigens in Richtung modern

Mehr Infos anzeigen

Wir benachrichtigen Dich gern über ähnliche Jobs in München:

Ähnliche Jobs

Masterarbeit / Semesterarbeit / IDP (m/w/d): Statistical Methods and Machine Learning in Medical Engineering – Foot Landmark and Bone Registration Estimation

München

Technische Universität München

Masterarbeit / Semesterarbeit / IDP (m/w/d): Statistical Methods and Machine Learning in Medical Engineering – Foot Landmark and Bone Registration Estimation

München

Technische Universität München

PhD Position in Transportation Analytics

München

Technische Universität München (TUM)

47.000 €60.500 €

PhD Position in Transportation Analytics

München

Technische Universität München (TUM)

47.000 €60.500 €

PhD Positions in Data Science

München

Helmholtz-Zentrum München

PhD Positions in Data Science

München

Helmholtz-Zentrum München

Data Validation & Analysis Intern (f/m/d)

München

Predium Technology GmbH

Data Validation & Analysis Intern (f/m/d)

München

Predium Technology GmbH

(IDP - Master thesis)Simulation of Tower Crane 3D Lift Task Integrated with Reinforcement Learning

München

Technische Universität München

(IDP - Master thesis)Simulation of Tower Crane 3D Lift Task Integrated with Reinforcement Learning

München

Technische Universität München

Doktorat im Bereich Mensch-KI-Kollaboration für Software Engineering (TV-L E13 100%)

München

Technische Universität München

49.500 €69.000 €

Doktorat im Bereich Mensch-KI-Kollaboration für Software Engineering (TV-L E13 100%)

München

Technische Universität München

49.500 €69.000 €

Flexikum AI-Driven Intent-Based Networking Automatisierte Netzwerkkonfiguration

München

Deutsche Telekom Technik GmbH

Flexikum AI-Driven Intent-Based Networking Automatisierte Netzwerkkonfiguration

München

Deutsche Telekom Technik GmbH

Student/in o. ä. (w/m/d) Entwicklung Quantenalgorithmen

Oberpfaffenhofen

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

Student/in o. ä. (w/m/d) Entwicklung Quantenalgorithmen

Oberpfaffenhofen

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

Intern Body Measurement & Anthropometry with Microwave Imaging & AI (m/w/d)

München

Rohde & Schwarz

Intern Body Measurement & Anthropometry with Microwave Imaging & AI (m/w/d)

München

Rohde & Schwarz