
Gabin Maxime Nguegnang
Fähigkeiten und Kenntnisse
Werdegang
Berufserfahrung von Gabin Maxime Nguegnang
- 1 Jahr und 6 Monate, Apr. 2024 - Sep. 2025
Doctoral Research Assistant and Teaching Assistant
Ludwig Maximilian University (LMU) of Munich
I study optimization methods for training deep neural networks, developing strategies for parameter initialization and learning rate selection. My work offers theoretical and practical insights into the development of deep learning, validated through experiments on neural networks with Gaussian data. I have experience in model training with Python, PyTorch, and HPC systems, translating AI research into practical solutions. I also teach exercise classes on Machine Learning, Deep Learning, and Optimization.
- 4 Jahre und 7 Monate, Sep. 2019 - März 2024
Doctoral Research Assistant and Teaching Assistant
RWTH Aachen University
I studied deterministic algorithms for training deep neural networks, establishing convergence properties of gradient descent for linear networks with constant and adaptive learning rates. My work advances optimization techniques for deep learning and supports effective model development. I also taught tutorials on Continuous Optimization, Mathematics of Data Science higher mathematics for engineer students.
- 1 Jahr, Juni 2018 - Mai 2019
Machine Learning Intern
Group One Holding
I Applied Machine Learning techniques to detect anomalies in fuel consumption data, optimize consumption, and limit fuel pilferage in telecommunication base stations. I trained Machine Learning models (including Neural Networks) that contributed to the security of approximately 84617 liters of fuel. Additionally, deployed predictive Machine Learning models into web applications, which facilitate visualization and monitoring of fuel consumption at each base station monthly
Sprachen
English
Fließend
Französisch
Muttersprache
German
Gut
XING Mitglieder mit ähnlichen Profilangaben
XING – Das Jobs-Netzwerk
Über eine Million Jobs
Entdecke mit XING genau den Job, der wirklich zu Dir passt.
Persönliche Job-Angebote
Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.
21 Mio. Mitglieder
Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.
Kostenlos profitieren
Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.
