
Suhas Devendrakeerti Sangolli
Fähigkeiten und Kenntnisse
Werdegang
Berufserfahrung von Suhas Devendrakeerti Sangolli
- 7 Monate, Jan. 2022 - Juli 2022
Master's thesis student
University of Stuttgart
• Worked on designing and implementing the deep learning-based entity match classifier that classifies continuous streaming entity pairs • An iterative method is designed to update the model parameters for the new dataset • Adopted active learning to obtain the true labels for the entity pairs • The entity pairs prediction and iterative model training are decoupled and work parallelly, independent of each other • Technology stack used: Python, PyTorch, BERT model, Kafka, Flask, MongoDB, GitHub
-Involved in the design and implementation of a high-performance ETL pipeline for the continuous supply of onboard data -Used spark transformation techniques such as aggregation, ordering and smoothing -Worked on the development of visualization charts for validating the raw and refined data -Worked on documentation (Confluence) for user requirements -Worked in agile, cross-functional research and development team -Technology stack used: PySpark, Python, SQL, Azure databricks, Data Factory, Data Lake, Git
-Worked on Business Intelligence (BI) tool called Datastage -Involved in the development of data pipeline for EOD/Weekly/Monthly ETL processes -Contributed to execution and maintenance of automated jobs to perform ETL tasks -Developed spark pipeline for onboard data refinement -Tested and reviewed the enhancement codes -Worked with stakeholders to translate the business requirements into queries and to represent the analytical reports -Technology stack used: Datastage, Servicenow, SQL, Spark, Python, GitHub
Ausbildung von Suhas Devendrakeerti Sangolli
- 2 Jahre und 10 Monate, Okt. 2019 - Juli 2022
Computer Science
University of Stuttgart
I learnt courses related to Data Science and Engineering like Data Warehouse, Data Mining, Hadoop, Spark, ML, DL and MS Azure. Also, I have exposure to Information visualization and visual analytics. My master thesis involves the design and implementation of a DL-based classifier to classify stream entity pairs. It adopts a BERT-based classifier to classify the streaming entity pairs. It also uses other technology stacks such as PyTorch, MongoDB, Apache Kafka, and Flask.
- 3 Jahre und 10 Monate, Aug. 2013 - Mai 2017
Information science
Vishweshvariah Technological University
Sprachen
Englisch
Muttersprache
Deutsch
Grundlagen
Kannada
Muttersprache
XING Mitglieder mit ähnlichen Profilangaben
XING – Das Jobs-Netzwerk
Über eine Million Jobs
Entdecke mit XING genau den Job, der wirklich zu Dir passt.
Persönliche Job-Angebote
Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.
22 Mio. Mitglieder
Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.
Kostenlos profitieren
Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.