
Muhammad Hassan Riaz Bhatti
Fähigkeiten und Kenntnisse
Werdegang
Berufserfahrung von Muhammad Hassan Riaz Bhatti
- Bis heute 2 Jahre und 10 Monate, seit Aug. 2022
Firmware Developer
aSpect Systems GmbH
- Experience in firmware development for ASICs and FPGAs using VHDL and Vivado. - Involved in the design, development, and testing of firmware. - Experience in debugging and troubleshooting firmware issues and familiar with software development tools such as version control, testing frameworks and debugging tools
- 8 Monate, Feb. 2021 - Sep. 2021
Project Engineer
Techno One Pakistan
- Recommend modifications to existing prototypes based on performance in quality tests. - Designing, developing and on-site installation/configuration of access control panels and electric barriers. - Design and develop new IoT based residential and commercial security access control systems. - Supervise technical staff, ensuring that customer demands & regulations are being followed. - Analyze system requirements and customer needs to determine feasibility of project and develop system plan.
- 2 Monate, Jan. 2019 - Feb. 2019
Operations Engineer
Lahore Electric Supply Company Limited (LESCO)
Worked at 132-KV Saidpur Grid Station and I was responsible for the following tasks: - Observe voltage transformers and circuit breakers - Monitor distribution equipment and record readings on hourly basis. - Monitor the status of transmission circuits and connections with substations. - Anticipate changes in power needs caused by weather. - Operating feeders for scheduled load shedding & troubleshooting
Ausbildung von Muhammad Hassan Riaz Bhatti
- Bis heute 3 Jahre und 8 Monate, seit Okt. 2021
Nanoelectronics System
Technische Universität Dresden
- 4 Jahre und 1 Monat, Feb. 2016 - Feb. 2020
Bachelor of Engineering (Honours) in Electrical Engineering
Curtin University
Activities and societies: IEEE, ISA (International Student Association)Activities and societies: IEEE, ISA (International Student Association) My bachelors thesis, "Power Disaggregation for Smart Grid Applications", considered different clustering ML algorithms (K-means and KNN) for power disaggregation. The objective was to suggest the better suited ML algorithm in order to disaggregate household electrical loads.
Sprachen
Englisch
Fließend
Deutsch
Grundlagen
XING Mitglieder mit ähnlichen Profilangaben
XING – Das Jobs-Netzwerk
Über eine Million Jobs
Entdecke mit XING genau den Job, der wirklich zu Dir passt.
Persönliche Job-Angebote
Lass Dich finden von Arbeitgebern und über 20.000 Recruiter·innen.
22 Mio. Mitglieder
Knüpf neue Kontakte und erhalte Impulse für ein besseres Job-Leben.
Kostenlos profitieren
Schon als Basis-Mitglied kannst Du Deine Job-Suche deutlich optimieren.